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Abstract. We state fundamental theorems and applications to mathematical items
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The author selects some items from Japanese book [3] with source papers [4], [5] and
[6] restricting fundamental theorems and applications to mathematical items about cy-
clotomic polynomials. There are no new results and no difficult items for understanding.
Would you like to use these results in your lecture for your students ?

In this paper, Latin small letters excepting e, x, i in equations or inequalities represent
non negative integers. In particular, p is a prime number.

1. Definition and popular theorems

In this section we present definition of cyclotomic polynomials and popular theorems
in the text books of algebras and number theory. In this paper, these results are used
without references.
Definition. Let ∆n be the set of primitive nth roots of 1, namely, ∆n := {ζkn | 1 ≤ k ≤

n with gcd(k, n) = 1} where ζn := e
2πi
n . The nth (order n) cyclotomic polynomial Φn(x)

is defined by Φn(x) :=
∏

ζkn∈∆n
(x− ζkn).

Popular theorems. Classifying orders in the set Ω of roots of xn − 1, we have Ω =∪
d|n ∆d and xn − 1 =

∏
d|nΦd(x). Thus Φn(x) ∈ Z[x] by the induction on n.

Φn(x) =
∏

d|n(x
d−1)µ(n/d) by Möbius inversion formula. Comparing the degrees of both

sides of these polynomials, we obtains n =
∑

d|n φ(d) and φ(n) =
∑

d|n µ(n/d)d where

φ(n) = |∆n|. It is easy to see that Galois group G(Q(ζn)/Q) is isomorphic to the group
Z∗

n of units of Z/nZ, namely, G(Q(ζn)/Q) = {σk : ζn → ζkn ∈ ∆n} ∼= Z∗
n.

2. Prime divisors and the order n of Φn(a)

Theorem 1 is the fundamental result on cyclotomic polynomials (see [3, p.46] or [4,
first paper, p.38]). This theorem gives a characterization of prime divisors of cyclotomic
polynomials. Theorem 1 was used to Theorems 2, 3 and Ap1.

Lemma 1. If b ≡ 1 mod p for a prime p > 2, then p ∥ bp−1
b−1

.

Proof. Set b := pu+ 1. Then bp−1
b−1

= (pu+1)p−1
pu

≡
(
p
2

)
pu+

(
p
1

)
≡ p mod p2.
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Theorem 1. Assume n ≥ 2, a ≥ 2, and let |a|p be the order of a mod p for a prime
p ∤ a. Then

p | Φn(a) if and only if p ∤ a and n = pr|a|p with r ≥ 0.
In this case, p ∥ Φn(a) if r ≥ 1 and n ≥ 3.

Proof. Assume p | Φn(a). Then from an − 1 ≡ 0 mod p and |a|p | n, we may set
n = pr|a|p · t with r ≥ 0 and p ∤ t. We set s := pr|a|p and b := as. Then n = st, b = as ≡
1 mod p. Since there exists a monic g(x) ∈ Z[x] with Φn(x)g(x) =

xst−1
xs−1

, we have t > 1
by n ≥ 2. A contradiction yields from

0 ≡ Φn(a)g(a) =
ast − 1

as − 1
=

bt − 1

b− 1
= bt−1 + · · ·+ 1 ≡ t ̸≡ 0 mod p.

Conversely, we assume n = pr|a|p. If p = 2 then n = 2r, a is odd and

Φ2r(a) = a2
r−1

+ 1 is even and 2 ∥ Φ2r(a) for r ≥ 2, namely n ≥ 4.
We may assume p is odd. In case r = 0, it is easy to see p | Φn(a). If r ≥ 1 and set

c = ap
r−1|a|p . Then we have

p ∥ cp − 1

c− 1
=

∏
d||a|p

Φprd(a)

since conditions of Lemma 1 are satisfied from assumptions.
Thus there exists d with p | Φprd(a) and 0 ≡ ap

rd − 1 ≡ (ad − 1)p
r
mod p. This implies

ad ≡ 1 mod p and |a|p | d, namely, d = |a|p. Thus p ∥ Φn(a).

3. Factorization of Φn(x) over fields

It is very important to consider the factorization of cyclotomic polynomials over any
fields by Theorem 2 (see [3, p.52], [4, V, p.31-32] or [5, VII, p.1]). In particular, factoriza-
tions over prime fields Fp determine the degrees (sizes) of prime ideals (see [1] or [7]) over
rational primes in subfields of cyclotomic fields. Cyclotomic fields defined by Φℓ(x) for
primes ℓ are the model of class field theory (see [7, Preface and introduction to Chapter
2, p.44]). Moreover the binary Golay code by the factorization of Φ23(x) mod 2 is rerated
to Mathieu group M23 and the planetary probe Voyager (see Ap6).

Lemma 2. (a) Φnps(x) = Φnp(x
ps−1

) for s ≥ 2. (b) Φnp(x) =
Φn(xp)
Φn(x)

for p ∤ n.
Proof. (a) It is enough to prove Φnp = Φn(x

p) for p | n. We can set n = n′p from p | n.

Φnp(x) =
∏
d|np

(xd − 1)µ(
np
d
) =

∏
d|n

(xpd − 1)µ(
n
d
)
∏
d|np

(xd − 1)µ(
n′
d
p2) = Φn(x

p).

(b) Let n0 be the product of distinct primes of n. Then Φn(x) = Φn0(x
n
n0 ) by (a).

On the other hand

Φnp(x) =
∏
d|np

(xd − 1)µ(
np
d
) =

∏
d|n(x

pd − 1)µ(
n
d
)∏

d|n(x
d − 1)µ(

n
d
)
=

Φn(x
p)

Φn(x)
.

Thus we have the result by the induction on the number r of distinct primes of n.

Theorem 2. A cyclotomic polynomial Φn(x) over a fieldK has irreducible components
of the same degree [L : K], where L is the minimum splitting field of Φn(x) over K.



Proof. Let f(x) ∈ K[x] be an irreducible component of Φn(x) ∈ K[x] and let α ∈ L
with the order m be a root of f(x). ’If part’ of Theorem 1 holds for α ∈ L from Φn(α) = 0
and assumptions for the characteristic p ≥ 0 of K. In case p = 0, Φn(x) is itself separable.
Further in case p > 0, n = psm (s ≥ 0, p ∤ m), the next equation holds for p > 0

Φn(x) = Φpm(x
ps−1

) ≡
(
Φm(x

p)

Φm(x)

)ps−1

≡ Φm(x)
ps−1(p−1) mod p.

Hence L is the minimum splitting field of Φm(x) and L = K(α). Thus m = [L : K] since
f(x) ∈ K[x] is irreducible and has the root α ∈ L.
Examples.

Ex1. Φn(x) ∈ Q[x] is irreducible. This implies that xn − 1 =
∏

d|n Φd(x) shows the
factorization of xn − 1 over Q.

Ex2. Φn(x) ∈ R[x] has irreducible factors with degree 2.

Φn(x) =
∏
k

(x− ζkn)(x− ζ−k
n ) =

∏
k

(x2 − 2(cos
2kπ

n
)x+ 1).

It shows Φn(x) is strict increasing for x ≥ 1. This implies Φn(a) ≥ 1 for n ≥ 2 and
a ≥ 1 (see the proof of Theorem 3).

Ex3. Φn(x) ∈ Fp[x] for a prime p has irreducible factors with the same degree d = |p|n,
namely, Fpd is a minimum splitting field by Frobenius automorphism.

4. Primes and Cyclotomic polynomials

Theorem 3 was proved by Theorem 1 and the estimation of Φn(a) (see Ex2). It has
applications to Ap1 and Ap3.

Lemma 3. If p | n and p = Φn(a), then n = 6 and a = 2 in case n ≥ 2 and a ≥ 2.

Proof. First we have the inequality (a+1)φ(n) > Φn(a) =
∏

k |a−ζk| > (a−1)φ(n) · · · (∗).
If a ≥ 3, the next inequality yields a contradiction.

p = Φn(a) > (a− 1)φ(n) ≥ 2p−1 by (∗).
Thus a = 2 and p is odd from 2n ≡ 1 mod p. From Theorem 1 n = prm and m = |2|p > 1.

If r ≥ 2 then p = Φn(2) = Φpm(2
pr−1

) and 2p
r−1 ≥ 4. This yields the same contradiction as

the above. Hence n = p|2|p and p > 2. The next inequality gives p = 3 and n = 3|2|3 = 6.

p = Φpm(2) =
Φm(2

p)

Φm(2)
>

(
2p − 1

2 + 1

)φ(m)

≥ 2p − 1

3
by (∗).

Theorem 3. There exists a prime p with n = |a|p satisfying condition (n, a) ̸= (6, 2)
for n ≥ 3, a ≥ 2 (A. S. Bang et al.).

Proof. Φn(a) > 1 since Φn(x) is strict increasing for x ≥ 1 from Ex2 and Φn(1) ≥ 1
from Lemma 2 and n ≥ 2. Thus there exists a prime p with p | Φn(a). Theorem 1 implies
n = |a|p in case p ∤ n. Thus p is the largest prime divisor since n = pr|a|p, r ≥ 1 and |a|p
is a divisor of p − 1 by Fermat little theorem. Further if q | Φn(a) with a prime q ̸= p,
then n = |a|q. Hence Φn(a) = ps, r ≥ 1 and n = pr|a|p ≥ 3. Thus s = 1 by Theorem 1
and so (n, a) = (6, 2) by Lemma 3.



5. Some applications of cyclotomic polynomials to the mathematical items

Ap1. Special case of theorem of Dirichlet can be proved: {ak±1 | k = 1, 2, · · · } contains
infinite many primes using Theorem 3 (see [3, p.40 for +1 ] or [5, VIII for −1]).

Ap2. Gauss sum is closely related to the discriminant of cyclotomic polynomials ([3,
p.67] or [4, first paper, p.40]).

Ap3. It follows from Theorem 3 that finite division rings is fields (see [3, p.107] or [5, IV,
p.2]). Unfortunately, Hamilton quaternion H is the only known division ring with
the explicit multiplication. We would like to find concrete division rings different
from H. Such a try began already on a paper [2, pp.74-83]).

Ap4. For n > 1, find a,m ≥ 2 such that gcd(am, n) = 1 and am ≡ 1 mod n. Then we
have n =

∏
d|m gcd(n,Φd(a)) (see [3, pp.95-96] or [4, V, p.33]).

Ap5. We can make a cipher as RSA cipher from cyclotomic polynomials because ad−1 ≡
1 mod d for d | Φn(a) with ℓ ∤ d where ℓ is the largest prime divisor of n (see [3,
p.83] or [5, IV, pp.1-2]).

Ap6. A code by an irreducible factor with degree 11 of Φ23(x) mod 2 was used to a
planetary probe Voyager. This code is also related to Mathieu group M23 (see [3,
p.86] or [4, V, pp.34-35]. In detail, see also binary Golay code in Wikipedia on
the internet.

Ap7. Some another applications Ramanujan’s sum (see [3, pp.60-64] or [6, pp.65-70])
and others (see [3, chapter 8] or [4] or [5]).
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